
Natural Policy Gradient for Exponential Families

Carson Eisenach∗ Zhuoran Yang∗

February 18, 2019

Abstract

Recent work has highlighted how a misalignment between the support of the policy and

the action space of the reinforcement learning problem can introduce bias and unnecessary

variance into policy gradient estimates. To better align the support of the policy and the

action space, we can consider using arbitrary exponential families to model the policy

distribution. Exponential families are a natural choice because the class of exponential

families is very rich and can model the support of most action spaces of practical interest.

While the multivariate Gaussian is the most commonly used distribution today, in general

it is possible to efficiently implement both natural policy gradient and TRPO for any

exponential family. In this technical report we derive efficient natural policy gradient

update rules for several exponential familes. We also consider an application of the

Gamma distribution to an optimal production problem and show that it substantially

outperforms the Gaussian.

1 Introduction

Deep reinforcement learning has seen great success in a wide variety of application areas – ranging

from complex games like Go (Silver et al., 2016) to high dimensional continuous control (Schulman

et al., 2015, 2016). For problems with discrete controls, such as Go, value based methods have

proved invaluable. For continuous control, is is more natural to model the policy directly, using

so-called policy based methods. However, it is widely acknowledged that policy based methods such

as Policy Gradient and TRPO are not nearly as robust as value based methods due to the difficulty

of obtaining low-variance unbiased estimators. Recent work (Chou et al., 2017; Fujita and Maeda,

2018; Eisenach et al., 2018) has demonstrated that part of the difficulty stems from a mismatch of

support in the sampling policy to the support of the effective action space – indeed the authors show

how bias and unnecessary variance is introduced into the learning process, and propose methods to

counteract it.

In this work, we derive algorithms tailored to exponential family policy distributions. Exponential

families are a natural choice because (1) they have many desirable properties including easy to

derive update rules for a wide range of algorithms and (2) exponential families are very rich, and in

∗Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08540.

1

all practical cases, one can find an exponential family with appropriate support for the problem

of interest. Because it is easy to derive quantities such as the Fisher Information for exponential

families, one can obtain significantly more efficient implementations of popular algorithms like

TRPO and natural policy gradient. We validate the use of exponential families experimentally on

several benchmark continuous control problems. By moving beyond Gaussian and Beta distributions

to arbitrary exponential families, we can tailor the policy distribution to the action space of a

particular RL problem.

1.1 Natural Policy Gradient

The natural policy gradient update is given by

∇̃J(θ) = F−1(θ)∇J(θ),

where ∇J is the standard policy gradient, F (θ) = Eρ(θ),π(θ)

[
∇ log fπ(a|s)∇ log fπ(a|s)>

]
, and ρ(θ)

is the discounted state occupancy distribution (or invariant distribution if we work in the average

reward setting).

1.2 Exponential Family

Members of the exponential family have densities of the form

f(x; η) = h(x) exp
[
T (x)>η −A(η)

]
where T is the sufficient statistic, η the natural parameter, and A is the log partition function.

If our policy is a member of the exponential family, and we parametrize the natural parameter η

by θ ∈ Θ, then the score function at state s becomes

Dθ log fπ(a) = T (a)>Dθη(θ)−DηA(η)Dθη(θ),

where for now we suppress the dependence on the state s. To simplify the expression above, we can

use the fact that DηA(η) = Eη [T (a)]> and by plugging into the display above get that

Dθ log fπ(a) = [T (a)− Eη [T (a)]]>Dθη(θ). (1.1)

To obtain the natural gradient when η is a function of θ, we first observe that the fisher

information is given by

I(θ) = Dθη
>I(η)Dθη. (1.2)

More generally, we can observe that (1.2) holds for any change of parametrization. We will leverage

this result in the sequel.

1.3 Why Use Exponential Families?

There are several reasons we are interested in using exponential families. One reason is that the

Fisher information, with respect to the natural parameters η, is given by

I(η) = DηEη [T (x)]> . (1.3)

2

2 Derivations for Gaussian Families

2.1 Single Variate Gaussian

We mention, without derivation, that the score function for the single-variate Gaussian is given by

ψ(x;ω) =

[
σ−2(x− µ);−1

2
σ−2 +

1

2
σ−4(x− µ)2

]>
, (2.1)

where ω = (µ, σ2) is the moment parameter.

2.2 Multivariate Gaussian

Recall that the density of the multivariate Gaussian in terms of its moment parameters µ and Σ is

given by

p(x;µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(

(x− µ)>Σ−1(x− µ)
)

where x ∈ Rd. As a member of the exponential family, we can find that

T (x) =
[
x, xx>

]
, η =

[
Σ−1µ;−1

2
Σ−1

]
, A(η) =

1

2

(
µ>Σ−1µ+ log |Σ|

)
, h(x) = (2π)−d/2.

Later we will find it useful to sometimes work instead with the vectorized parameter η̃ := [η1; vec(η2)].

Jacobian of natural parameters with respect to the moment parameters

The moment parameters are given by ω = (µ, vec(Σ)). To obtain the Jacobian of the transformation,

we first observe that dη1 = −Σ−1 (dΣ) Σ−1µ+ Σ−1dµ, and therefore

Dωη̃1 =
[
Σ−1;−µ>Σ−1 ⊗ Σ−1

]
.

Likewise, dη2 = 1
2Σ−1 (dΣ) Σ−1, or equivalently that

Dωη̃2 =

[
0;

1

2
Σ−1 ⊗ Σ−1

]
.

Combining the two previous displays gives

Dωη̃ =

[
Σ−1 −µ>Σ−1 ⊗ Σ−1

0 1
2Σ−1 ⊗ Σ−1

]
. (2.2)

Score Function

Recall the score function is defined as ψ(x;ω) = Df(x;ω)>. Using (1.1) and (2.2), we can obtain

that

ψ1(x;ω) = Σ−1 (x− µ)

3

and

ψ2(x;ω) =

[
(x− µ)>

(
−µ>Σ−1 ⊗ Σ−1

)
+ vec

(
xx> − Σ−1 − µµ>

)>(1

2
Σ−1 ⊗ Σ−1

)]>
= −

(
Σ−1µ⊗ Σ−1

)
(x− µ) +

1

2

(
Σ−1 ⊗ Σ−1

)
vec

(
xx> − Σ−1 − µµ>

)
= −vec

(
Σ−1

(
xµ> − µµ>

)
Σ−1

)
+

1

2
vec

(
Σ−1

(
xx> − Σ− µµ>

)
Σ−1

)
= vec

(
Σ−1

(
1

2
xx> − xµ> +

1

2
µµ> − 1

2
Σ

)
Σ−1

)
=

1

2
vec

(
Σ−1 (x− µ) (x− µ)>Σ−1 − Σ−1

)
where we used E

[
xx>

]
= Σ + µµ>. Thus in terms of the moment parameters ω = (µ, vec(Σ)) the

score function is given by

ψ(x;ω) =

[
(x− µ)>Σ−1;

1

2
vec

(
Σ−1 (x− µ) (x− µ)>Σ−1 − Σ−1

)>]>
, (2.3)

which in 1-dimension clearly reduces to (2.1).

Fisher Information Matrix - Derivation 1

In this first approach, we take the Fisher Information with respect to the canonical parameters,

and then transfer to the moment parametrization using (1.2). As in (1.1), we see that for any

exponential family

dl(x, η) =
∑
i

[Ti(x)− E [Ti(x)]]> dηi

where l(η) is the log-likelihood function; which inner product is denoted by x>x should be clear

from the context. For the Gaussian, this becomes

dl(x, η) =

[
x+

1

2
η−1

2 η1

]>
dη1 + tr

[(
xx> +

1

2
η−1

2 −
1

4
η−1

2 η1η
>
1 η
−1
2

)
dη2

]
, (2.4)

where we used the identities µ = −1
2η
−1
2 η1 and Σ = −1

2η
−1
2 . Taking the differential a second time,

d2l(x, η) = d

[
x+

1

2
η−1

2 η1

]>
dη1︸ ︷︷ ︸

(i)

+ d tr

[(
xx> +

1

2
η−1

2 −
1

4
η−1

2 η1η
>
1 η
−1
2

)
dη2

]
︸ ︷︷ ︸

(ii)

. (2.5)

Immediately, term (i) can be expanded as

(i) =
1

2
dη>1 η

−1
2 dη1 −

1

2
η>1 η

−1
2 (dη2) η−1

2 dη1

=
1

2
dη>1 η

−1
2 dη1 −

1

2
(dvecη2)>

(
η−1

2 η1 ⊗ η−1
2

)
dη1.

4

For term (ii), we see that

(ii) = −1

2
tr
(
η−1

2 (dη2) η−1
2 dη2

)
− 1

4
tr
([

d
(
η−1

2

)
η1η
>
1 η
−1
2 + η−1

2 d
(
η1η
>
1

)
η−1

2 + η−1
2 η1η

>
1 d
(
η−1

2

)]
dη2

)
= −1

2
tr
(
η−1

2 (dη2) η−1
2 dη2

)
− 1

4
tr
(

d
(
η−1

2

)
η1η
>
1 η
−1
2 dη2 + η−1

2 η1η
>
1 d
(
η−1

2

)
dη2

)
︸ ︷︷ ︸

(ii.a)

− 1

4
tr
(
η−1

2 d
(
η1η
>
1

)
η−1

2 dη2

)
︸ ︷︷ ︸

(ii.b)

(2.6)

We can expand term (ii.a) as

(ii.a) = − tr
(
η−1

2 (dη2) η−1
2 η1η

>
1 η
−1
2 dη2

)
− tr

(
η−1

2 η1η
>
1 η
−1
2 (dη2) η−1

2 dη2

)
= −2η>1 η

−1
2 dη2η

−1
2 (dη2) η−1

2 η1

= −2
(
dη2η

−1
2 η1

)> (
η−1

2 (dη2) η−1
2 η1

)
= −2 (dvecη2)>

(
η>1 η

−1
2 ⊗ Id,d

)> (
η>1 η

−1
2 ⊗ η−1

2

)
dvecη2

= −2 (dvecη2)>
(
η−1

2 η1η
>
1 η
−1
2 ⊗ η−1

2

)
dvecη2.

Likewise term (ii.b) can be expanded as

(ii.b) = tr
(
η−1

2 (dη1) η>1 η
−1
2 dη2

)
+ tr

(
η−1

2 η1 (dη1)> η−1
2 dη2

)
= η>1 η

−1
2 dη2η

−1
2 dη1 + (dη1)> η−1

2 dη2η
−1
2 η1

= 2
(
η−1

2 dη2η
−1
2 η1

)>
dη1

= 2 (dvecη2)>
(
η−1

2 η1 ⊗ η−1
2

)
dη1

Plugging back into (2.6) gives that

(ii) = −1

2
(dvecη2)>

(
η−1

2 η1 ⊗ η−1
2

)
dη1 +

1

2
(dvecη2)>

(
η−1

2 η1η
>
1 η
−1
2 ⊗ η−1

2 − η−1
2 ⊗ η−1

2

)
dvecη2

Plugging the expressions for (i) and (ii) into (2.5) gives

d2l(x, η) =
1

2
dη>1 η

−1
2 dη1 − (dvecη2)>

(
η−1

2 η1 ⊗ η−1
2

)
dη1

+
1

2
(dvecη2)>

(
η−1

2 η1η
>
1 η
−1
2 ⊗ η−1

2 − η−1
2 ⊗ η−1

2

)
dvecη2 (2.7)

Applying Lemma A.2 to (2.7) gives

Hη̃l(x, η̃) =
1

2

[
η−1
2 −η>1 η

−1
2 ⊗η

−1
2

−η−1
2 η1⊗η−1

2 (η−1
2 η1η>1 η

−1
2 −η

−1
2)⊗η−1

2

]
,

and therefore that

I(η̃) =
1

2

[
−η−1

2 η>1 η
−1
2 ⊗η

−1
2

η−1
2 η1⊗η−1

2 (η−1
2 −η

−1
2 η1η>1 η

−1
2)⊗η−1

2

]
=
[

Σ 2µ>⊗Σ

2µ⊗Σ (2Σ+4µµ>)⊗Σ

]
. (2.8)

5

To transfer to the moment parametrization, we first compute the intermediate result A := Dωη
>I(η)

by using (2.8) and (2.2). This gives us

A =
[
Id,d 2µ>⊗Id,d

0d2,d Id,d⊗Id,d

]
.

Finally, by multiplying again by Dωη̃, we obtain

I(ω) =
[

Σ−1 0
0 1

2
Σ−1⊗Σ−1

]
, (2.9)

which as we can see, matches the Fisher information for the single-variate Gaussian with respect to

the moment parameters.

2.3 Multivariate Gaussian with Diagonal Covariance

In practice, we often model the covariance as diagonal (ie. Σ = diag(σ)), in which case the previous

display can be simplified to

T (x) =
[
x;x2

]>
, η =

[
σ−1 ◦ µ;−1

2
σ−1

]
, A(η) =

1

2

(
µ>diag(σ−1)µ+ log |diag(σ)|

)
, h(x) = (2π)−d/2,

where all exponentials are to be interpreted as entry-wise.

Jacobian of natural parameters with respect to the moment parameters

The moment parameters are given by ω = (µ, σ). To obtain the Jacobian of the transformation, we

first observe that dη1 = −σ−2 ◦ µ ◦ dσ + σ−1 ◦ dµ, and therefore

Dωη1 =
[
diag(σ−1);−diag(σ−2 ◦ µ)

]
.

Likewise, dη2 = 1
2σ
−2 ◦ dσ, or equivalently that

Dωη2 =

[
0;

1

2
diag(σ−2)

]
.

Combining the two previous displays gives

Dωη̃ =

[
diag(σ−1) −diag(σ−2 ◦ µ)

0 1
2diag(σ−2)

]
. (2.10)

Score Function

If we view η as a function of ω := (µ, σ), then we can reduce (2.3) to

ψ(x, ω) =

[(
(x− µ) ◦ σ−1

)>
;
1

2

((
x2 − µ2

)
◦ σ−2 − σ−1

)>]>
. (2.11)

6

Fisher Information

Though we could derive the appropriate expressions for this model from the previous section, it will

be just as easy to re-derive the results directly. We can find the first differential of the log-likelihood

as

dl(x, η) =

[
x+

1

2
η−1

2 ◦ η1

]>
dη1 +

[
xx> +

1

2
η−1

2 −
1

4
η−2

2 ◦ η2
1

]>
dη2. (2.12)

Taking the differential a second time, we see that

d2l(x, η) =
1

2

[
η−1

2 ◦ dη1 − η1 ◦ η−2
2 ◦ dη2

]>
dη1 +

1

2

[
−η−2

2 ◦ dη2 + η−3
2 ◦ η2

1 ◦ dη2 − η−2
2 ◦ η1 ◦ dη1

]>
dη2

=
1

2
dη>1 diag(η−1

2)dη1 − dη>2 diag(η1 ◦ η−2
2)dη1 +

1

2
dη>2 diag(η−3

2 ◦ η2
1 − η−2

2)dη2. (2.13)

Applying Lemma A.2 to (2.13) gives

Hηl(x, η) =
1

2

[
η−1
2 −diag(η1◦η−2

2)

−diag(η1◦η−2
2) diag(η−3

2 ◦η21−η
−2
2)

]
,

and therefore that

I(η) =
1

2

[
−diag(η−1

2) diag(η1◦η−2
2)

diag(η1◦η−2
2) diag(η−2

2 −η
−3
2 ◦η21)

]
=
[

diag(σ) 2diag(σ2◦µ)

2diag(σ2◦µ) diag(2σ2+4σ◦µ2)

]
. (2.14)

To transfer to the moment parameters, we use (1.2), which gives us

I(ω) =
[

diag(σ−1) 0

0 1
2

diag(σ−2)

]
. (2.15)

If instead we choose to parametrize by ω′ := (µ, σ1/2), the mean and standard deviation, then using

the fact that Dσ1/2σ = 2σ1/2 and (1.2) we find that

I(ω′) =
[

diag(σ−1) 0

0 2diag(σ−1)

]
. (2.16)

A final parametrization of interest is ω′′ := (µ, 1
2 log σ). In this instance, similarly find that

D1/2 log σσ = 2σ1/2

I(ω′′) =
[

diag(σ−1) 0
0 2

]
. (2.17)

Modeling the Moment Parameters

We model σ directly and µ as µ = f(θµ), giving the parameter θ := (θµ, σ). Then the Fisher

information is given by

I(θ) = Dθω(θ)>I(ω)Dθω(θ),

where

Dθω(θ) =

[
Dθf 0

0 I

]
.

Combining these expressions and multiplying out gives

I(θ) =

[
Dθf

>I(ω)1,1Dθf Dθf
>I(ω)1,2

I(ω)1,2Dθf I(ω)2,2

]
. (2.18)

7

3 Multivariate Beta Distribution

If a random variable X ∈ [0, 1] is distributed according to the beta distribution with parameters

(α, β), then it has the density

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

We consider the random vector x ∈ Rd distributed according to the product d independent beta

distributions, each of which is parametrized by some αi, βi. In particular,

f(x;α, β) =
d∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
xαi−1
i (1− xi)βi−1.

The log-likelihood function is given by

l(α, β;x) =
∑
i

(αi − 1) log(xi) + (βi − 1) log(1− xi) + log Γ(αi + βi)− log Γ(αi)− log Γ(βi).

Useful Properties

It will often be useful to write results in terms of the polygamma functions, defined as

ψ(m)(x) :=
dm+1

dxm+1
log Γ(x).

One fact that will be useful later is that for the single variate beta-distribution, E[log x] = ψ0(α)−
ψ0(α+ β) and E[log(1− x)] = ψ0(β)− ψ0(α+ β).

3.1 Natural Parametrization

In this section we show that in fact η = [α;β] is the natural parameter of the multi-variate beta

distribution. Indeed,

f(x;α, β) =

[
d∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
xαii (1− xi)βi

][
d∏
i=1

x−1
i (1− xi)−1

]

= h(x) exp

[
d∑
i=1

αi log(xi) + βi log(1− xi) + log Γ(αi + βi)− log Γ(αi)− log Γ(βi)

]
= h(x) exp

[
T (x)>η −A(η)

]
where h(x) =

[∏d
i=1 x

−1
i (1− xi)−1

]
, T (x) = [log(x); log(1− x)], and A(η) =

∑d
i=1 log Γ(αi)Γ(βi)

Γ(αi+βi)
.

8

3.2 KL Divergence

Because each component of the random vector is independent, we first find the KL-divergence

between two single-variate beta-distribution. Allowing P to be parametrized by a, b and Q by c, d,

we find that

KL(P ||Q) =

∫
[0,1]

[log Γ(a+ b)− log Γ(c+ d)− log Γ(a)− log Γ(b) + log Γ(c) + log Γ(d)

+ (a− c) log x+ (b− d) log(1− x)] dP (x)

= log Γ(a+ b)− log Γ(c+ d)− log Γ(a)− log Γ(b) + log Γ(c) + log Γ(d)

+ (a− c)(ψ0(a)− ψ0(a+ b)) + (b− d)(ψ0(b)− ψ0(a+ b)) (3.1)

Now consider two multivariate beta distributions, P and Q, parametrized by α1, β1 and α2, β2,

respectively. The KL-divergence between P and Q is given by

KL(P ||Q) =

d∑
i=1

log Γ(α1
i + β1

i)− log Γ(α2
i + β2

i)− log Γ(α1
i)− log Γ(β1

i) + log Γ(α2
i) + log Γ(β2

i)

+ (α1
i − α2

i)(ψ
0(α1

i)− ψ0(α1
i + β1

i)) + (β1
i − β2

i)(ψ0(β1
i)− ψ0(α1

i + β1
i)) (3.2)

3.3 Fisher Information

For notational compactness we typically denote the entry-wise application of a single variate function

by overloading its notation – i.e. for x ∈ Rd we may write log(x) := (log(xi))i. First we find the

differential of l as a function of α and β as

dl(α, β;x) =
∑
i

log(xi)dαi + log(1− xi)dβi + ψ(0)(αi + βi)(dαi + dβi)− ψ(0)(αi)dαi − ψ(0)(βi)βi

=

[
log(x) + ψ(0)(α+ β)− ψ(0)(α)︸ ︷︷ ︸

:= g1(α, β)

; log(1− x) + ψ(0)(α+ β)− ψ(0)(β)︸ ︷︷ ︸
:= g2(α, β)

]>
[dα; dβ] .

(3.3)

Next we find the differentials of g1 and g2 as

dg1(α, β) = diag[ψ(1)(α+ β)](dα+ dβ)− diag[ψ(1)(α)]dα,

dg2(α, β) = diag[ψ(1)(α+ β)](dα+ dβ)− diag[ψ(1)(β)]dβ.

Plugging into (3.3) the above expressions, we find d2l(α, β) as

d2l(α, β) = dα>diag[ψ(1)(α+ β)− ψ(1)(α)]dα+ 2dα>diag[ψ(1)(α+ β)]dβ

+ dβ>diag[ψ(1)(α+ β)− ψ(1)(β)]dβ. (3.4)

Applying Lemma A.2 to (3.4) gives

Hl(α, β) =

[
diag[ψ(1)(α+ β)− ψ(1)(α)] diag[ψ(1)(α+ β)]

diag[ψ(1)(α+ β)] diag[ψ(1)(α+ β)− ψ(1)(β)]

]
.

9

Thus the Fisher Information with respect to the parameters (α, β) is given by

I(α, β) =

[
diag[ψ(1)(α)− ψ(1)(α+ β)] −diag[ψ(1)(α+ β)]

−diag[ψ(1)(α+ β)] diag[ψ(1)(β)− ψ(1)(α+ β)]

]
. (3.5)

3.4 Modeling the Natural Parameters

We model α = f(θα) and β = g(θβ), giving the parameter θ := (θα, θβ). We can write η (defined

above) as a function η(θ) Then the Fisher information is given by

I(θ) = Dθη(θ)>I(ω)Dθη(θ),

where

Dθη(θ) =

[
Dθαf 0

0 Dθβg

]
.

Combining these expressions and multiplying out gives

I(θ) =

[
Dθαf

>I(η)1,1Dθαf Dθαf
>I(η)1,2Dθβg

Dθβg
>I(η)2,1Dθαf Dθβg

>I(η)2,2Dθβg

]
. (3.6)

4 Multivariate Gamma Distribution

If a random variable X ∈ (0,∞) is distributed according to the beta distribution with parameters

(α, β), then it has the density

f(x;α, β) =
βαxα−1 exp(−βx)

Γ(α)
,

where α, β > 0.

We consider the random vector x ∈ Rd distributed according to the product d independent beta

distributions, each of which is parametrized by some αi, βi. In particular,

f(x;α, β) =
d∏
i=1

βαxαi−1
i exp(−βixi)

Γ(αi)
.

The log-likelihood function is given by

l(α, β;x) =

d∑
i=1

αi log(βi) + (αi − 1) log(xi)− βixi − log Γ(αi).

4.1 Natural Parametrization

In this section we show that η = [α− 1;−β] is the natural parameter of the multi-variate gamma

distribution. Indeed,

f(x;α, β) = h(x) exp

[
d∑
i=1

αi log(βi) + (αi − 1) log(xi)− βixi − log Γ(αi)

]
= h(x) exp

[
T (x)>η −A(η)

]
10

where h(x) = 1, T (x) = [log(x);x], and A(η) =
∑d

i=1 αi log βi − log Γ(αi).

4.2 KL Divergence

Because each component of the random vector is independent, we first find the KL-divergence

between two single-variate gamma-distribution. Allowing P to be parametrized by a, b and Q by c,

d, we find that

KL(P ||Q) =

∫
[0,∞)

[a log b− c log d+ (a− c) log x+ (d− b)x− log Γ(a) + log Γ(c)] dP (x)

= a log b− c log d+ (a− c)EP [log x] + (d− b)EP [x]− log Γ(a) + log Γ(c)

= a log b− c log d+ (a− c)(ψ(0)(a)− log b) + (d− b)(a/b)− log Γ(a) + log Γ(c)

= c log b− c log d+ (a− c)ψ(0)(a) + (d− b)(a/b)− log Γ(a) + log Γ(c), (4.1)

where we used that EP [log x] = ψ(0)(a)− log b and EP [x] = a/b.

Now consider two multivariate gamma distributions, P and Q, parametrized by α1, β1 and

α2, β2, respectively. The KL-divergence between P and Q is given by

KL(P ||Q) =

d∑
i=1

α2
i log β1

i − α2
i log β2

i + (α1
i − α2

i)ψ
(0)(α1

i) + (β2
i − β1

i)(α1
i /β

1
i)− log Γ(α1

i) + log Γ(α2
i)

= α2,>(log β1 − log β2) + (α1 − α2)>ψ(0)(α1) + (β2 − β1)>(α1/β1) + (log Γ(α2)− log Γ(α1))>1

(4.2)

4.3 Fisher Information

Recall that Eη[T (x)] = [ψ(0)(η1 + 1)− log(−η);α� β−1] := E(η). To find the Fisher Information,

we can use (1.3) by first observing that

dE1(η) = d[ψ(0)(η1 + 1)]− d[log(−η)]

= diag(ψ(0)(α))dη1 + diag(β−1)dη2 (4.3)

and that

dE2(η) = d[η1 + 1]� β−1 − (η1 + 1)d[−η−1]

= diag(β−1)dη1 + diag(αβ−2)dη2. (4.4)

Combining (4.3) and (4.4) gives

I(η) =

[
diag(ψ(1)(α)) diag(β−1)

diag(β−1) diag(αβ−2)

]
, (4.5)

or equivalently

I(ω) =

[
diag(ψ(1)(α)) −diag(β−1)

−diag(β−1) diag(αβ−2)

]
, (4.6)

in terms of the parameterization ω := [α;β].

11

4.4 Modeling the Parameters

We model α = f(θα) and β = g(θβ), giving the parameter θ := (θα, θβ). We can write ω (defined

above) as a function ω(θ). Then the Fisher information is given by

I(θ) = Dθω(θ)>I(ω)Dθω(θ),

where

Dθω(θ) =

[
Dθαf 0

0 Dθβg

]
.

Combining these expressions and multiplying out gives

I(θ) =

[
Dθαf

>I(ω)1,1Dθαf Dθαf
>I(ω)1,2Dθβg

Dθβg
>I(ω)2,1Dθαf Dθβg

>I(ω)2,2Dθβg

]
. (4.7)

5 Natural Policy Gradient Algorithm

To obtain the natural gradient, we need to find a vector that satisfies

I(θ)g = qπ(s, a)∇ log fπ(a|s).

We can do this using the conjugate gradient method (Schulman et al., 2015).

5.1 Details for MV Gaussian with Diagonal Covariance

From Section 2.3 we have a closed form expression for the Fisher Information in (2.18) when the

mean is modeled by a function approximator and σ is modeled directly. The only quantity that

needs to be found algorithmically is Dθf .

Let p denote the dimension of θ. The key operation any implementation needs to provide is the

Fisher-vector product I(θ)v for arbitrary v ∈ Rp+d. Denoting this operation by F , we have from

(2.18) that

F (v) =

[(
Dθf

>I(ω)1,1Dθfv1

)>
; (I(ω)2,2v1)>

]>
=

[(
(Dθf

>)(diag(σ−1)Dθfv1

)>
;

(
1

2
diag(σ−2)v1

)>]>
. (5.1)

We can pre-compute Dθf
> and diag(σ−1)Dθf , which require O(pd) memory to store. Because p is

usually many orders of magnitude larger than d, this is only marginally more expensive than storing

the network itself. To perform all the matrix multiplications requires O(pd) arithmetic operations.

12

5.2 Details for Multivariate Beta Distribution

As before, we need to find the fisher-vector product F (v) which from Section 3 we can find as

F (v) =

[(
Dθf

>I(η)1,1Dθfv1 + Dθf
>I(η)1,2Dθgv2

)>
;
(

Dθg
>I(η)2,1Dθfv1 + Dθg

>I(η)2,2Dθgv2

)>]>
.

Denote by p the dimension of θ and d the dimension of α, β. We can pre-compute the quantities

Dθf
>I(η)1,1, Dθf

>I(η)1,2, Dθg
>I(η)2,1, and Dθg

>I(η)2,2. Because all the sub-matrices in I
are diagonal, only O(pd) operations are required. Likewise, the memory required to store the

precomputed quantities is O(pd).

Using the precomputed quantities, each FVP requires eight matrix vector products requiring

O(pd) operations total. Typically d� p, so the computational burden is far less than that required

to compute the Hessian of the log-likelihood directly which clearly requires Ω(d2) operations.

6 Some RL Problems

6.1 Production Problem 1

In this problem we consider an optimal production problem (quite similar to a news-vendor model).

Specifically, we model the sequential decision making problem faced by a factory manager who at

each time step t can produce goods from a set G. The semantics of the decision making problem are:

at time t the manager decides (1) how many of each good to produce subject to having the requisite

raw materials and (2) how many of each material m ∈M to order for the next time period; then

demand d ∈ R|G|+ is realized and the manager sells as many goods as possible, constrained only by

d and his inventory level. For simplicity, we assume that goods and raw materials can be bought,

produced and sold in (nonnegative) real valued quantities and that there are no budget constraints.

This problem is naturally modeled as a Markov Decision Process (MDP), and below we formulate it

as a reward maximization problem.

Formal Model

To formulate the problem, we introduce the following parameters

• G, M – set of goods that can be produced and raw materials that can be used

• M(g) – set of materials needed for good g. For all g and g′, M(g) ∩M(g′) = ∅.

• a[g,m] – amount of material m needed to produce one unit of g

• p[g], p[m] – price of a good g ∈ G or material m ∈M

• c[g], c[m] – storage cost for good g ∈ G or material m ∈M per time period

The state st at time t:

• st[g], st[m] – quantity of good g or material m at start of time period t

13

The manager makes a decision ut ∈ U(st), defined by

• Production Decision: ut[m], ut[g] – raw materials to purchase and goods to produce at time t.

• Available Actions: U(s) = {u : u ≥ 0, u[g] ≤ l(s)[g] for all g ∈ G}

• Max. Possible Production: l(s)[g] = minm∈M(g){s[m]/a[g,m]}

After observing st and making decision ut, demand is realized, giving rt+1 and st+1 as follows:

• Realized demand: dt[g]

• Goods Inventory: st+1[g] = max{st[g] + ut[g]− d, 0} for each g

• Materials Inventory: st+1[m] = st[m]− a[g,m]ut[g] + ut[m] for g ∈ G and m ∈M(g)

• Reward:

rt+1 =
∑
g∈G

p[g] min{st[g] + ut[g], d} −

 ∑
m∈M

p[m]ut[m] +
∑
g∈G

c[g]st+1[g] +
∑
m∈M

c[m]st+1[m]

There are multiple choices for objective, but we consider the finite horizon, cumulative discounted

reward maximization problem. Formally, the manager’s goal is

max
π∈Π

J(π) = Eπ

[
T∑
t=0

γtrt+1

]
,

where Π is the set of all Markov policies.

RL Formulation

Because the demand distribution is not known a priori, an appropriate choice of stochastic policy

is one with support [0,∞). One viable choice then is the gamma distribution. In keeping with

the model free nature of many modern RL approaches, we can allow an agent to interact with the

environment by sending actions and receiving observations in S = U = [0,∞)|G|+|M|. In this way,

the agent does not need knowledge of the problem parameters or to directly observe demand at

each time step to learn an optimal policy.

Instance 1 – Results

In this first instantiation, we choose the problem parameters

• G = {I, II, III, IV}, M(g) = {g.A, g.B, g.B}

• a[g,m] = 1 for all g and m ∈M(g)

• p[I], p[II], p[III], p[IV] = 1.75, 2, 2.25, 2.5

14

0 500 1000 1500 2000 2500

Number of Updates

−1000

−800

−600

−400

−200

0

200

C
u

m
u

la
ti

ve
D

is
co

u
n
te

d
R

ew
ar

d

Comparison Plot

Algorithm
Gamma

GaussianML

GaussianMS

Figure 1: Results on Instance 1 of the Optimal Production problem

• p[g.A] = p[g.B] = p[g.C] = 0.5 for all g

• c[g] = c[m] = 0.1 for all g and m

• d[g] ∼ Γ(k, µ) where k = 9.0 is the shape and µ = 4.5 is the mean parameter

• γ = 0.995, T = 1000

We used the same architecture for each parameter – a feed-forward neural network with 2

hidden layers of 32 nodes, with tanh activation functions after each hidden layer. For the Gamma

distribution, we model the parameters α and β, passing the final output of each parameter network

through a soft-plus activation to ensure it is positive. For the normal distribution, we consider two

parameterizations: (1) µ, σ1/2, the mean and standard deviation, and (2) µ and log σ1/2. For the

first parametrization, no activation is applied to the output for µ and a soft-plus is applied to the

parameter net for σ−1/2. For the second parameterization, no activation is applied to the output of

either parameter net. Figure 1 compares the performance of TRPO using each of the distributions.

In the plot, the Gaussian parameterizations are labeled GaussianMS and GaussianML, respectively.

Using the Gamma distribution outperforms the Gaussian by a factor of 25%.

15

References

Chou, P.-W., Maturana, D. and Scherer, S. (2017). Improving Stochastic Policy Gradients in

Continuous Control with Deep Reinforcement Learning using the Beta Distribution. In ICML.

Eisenach, C., Yang, H., Liu, J. and Liu, H. (2018). Marginal Policy Gradients for Complex

Control. arXiv:1806.05134.

Fujita, Y. and Maeda, S.-I. (2018). Clipped Action Policy Gradient. In ICML.

Schulman, J., Levine, S., Moritz, P., Jordan, M. and Abbeel, P. (2015). Trust Region

Policy Optimization. In ICML.

Schulman, J., Moritz, P., Levine, S., Jordan, M. and Abbeel, P. (2016). High-Dimensional

Continuous Control Using Generalized Advantage Estimation. In ICLR.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016). Mastering the game of Go with

deep neural networks and tree search. Nature 529 484–489.

16

https://arxiv.org/abs/1806.05134

A Preliminary Results

A.1 The vec operator and the Kronecker Product

Several useful properties of the Kronecker product and vec operator are given below. Notationally,

lower case letters indicate vectors and uppercase letters, matrices.

vec(ABC) =
(
C> ⊗A

)
vecB,

A
(
b> ⊗ Id,d

)
= b> ⊗A,

(b⊗ Id,d)A = b⊗A

A.2 Results in Differential Calculus

A.2.1 Partitioning the Hessian

In this section we demonstrate some useful lemmas for finding the Hessian of a function of a

partitioned vector.

Lemma A.1. Let φ : Rp+q → R be a twice differentiable scalar function. Let x ∈ Rp+q be

partitioned as x = [x>1 ;x>2]> where x1 ∈ Rp and x2 ∈ Rq. If d2φ(x) = dx>1 Adx2 for some A ∈ Rp×q,
then

Hxφ(x) =

[
0p,p

1
2A

1
2A
> 0q,q

]
.

Proof. First, observe that we can write

x1 = [Ip; 0p,q]x, and x2 = [0q,p; Iq,q]x.

Then it follows that

dx>1 Adx2 = dx> [Ip; 0p,q]
>A [0q,p; Iq,q] dx

= dx>
[
A>; 0q,q

]>
[0q,p; Iq,q] dx

= dx>
[

0p,p A
0q,p 0q,q

]
dx.

The result now follows immediately from the identification theorem for the second differential.

Lemma A.2. Let φ : Rp+q → R be a twice differentiable scalar function. Let x ∈ Rp+q be

partitioned as x = [x>1 ;x>2]> where x1 ∈ Rp and x2 ∈ Rq. If

d2φ(x) = dx>1 Adx1 + dx>1 Bdx2 + dx>2 Cdx2

for some A ∈ Rp×p, B ∈ Rp×q, and C ∈ Rq×q then

Hxφ(x) =
1

2

[
(A+A>) B

B> (C+C>)

]
.

17

Proof. Following an analogous argument to the one made in the proof of Lemma A.1, we obtain

dx>1 Adx1 + dx>1 Bdx2 + dx>2 Cdx2 = dx>
[
A B

0q,p C

]
dx.

After symmetrizing, the result follows from the identification theorem for the second differential.

18

	Introduction
	Natural Policy Gradient
	Exponential Family
	Why Use Exponential Families?

	Derivations for Gaussian Families
	Single Variate Gaussian
	Multivariate Gaussian
	Multivariate Gaussian with Diagonal Covariance

	Multivariate Beta Distribution
	Natural Parametrization
	KL Divergence
	Fisher Information
	Modeling the Natural Parameters

	Multivariate Gamma Distribution
	Natural Parametrization
	KL Divergence
	Fisher Information
	Modeling the Parameters

	Natural Policy Gradient Algorithm
	Details for MV Gaussian with Diagonal Covariance
	Details for Multivariate Beta Distribution

	Some RL Problems
	Production Problem 1

	Preliminary Results
	The vec operator and the Kronecker Product
	Results in Differential Calculus
	Partitioning the Hessian

